Telegram Group & Telegram Channel
Почему логистическая регрессия не подвержена переобучению так же сильно, как деревья решений или нейросети

Логистическая регрессия — это линейная модель, и ее склонность к переобучению значительно ниже, чем у более гибких моделей, таких как decision trees или нейросети. Вот почему:

1. Ограниченная сложность модели

Логистическая регрессия линейно разделяет пространство признаков, что ограничивает ее гипотезы (модельное семейство). Это значит, что она имеет высокое смещение (bias), но низкую дисперсию (variance). Переобучение обычно связано с высокой дисперсией, которой у линейной модели меньше.

2. Малая VC-дименсия

В отличие от деревьев решений, которые могут запомнить структуру обучающей выборки почти целиком, логистическая регрессия имеет гораздо более низкую VC-дименсию, а значит — меньше риск выучить шум.

3. Регуляризация встроена естественным образом

В логистическую регрессию часто добавляют L1 или L2 регуляризацию (например, через параметр C в `sklearn`). Это сдерживает веса модели и предотвращает переобучение.

4. Обучение через оптимизацию функции правдоподобия

Вместо того чтобы искать сложные деревья или веса, как в нейросетях, логистическая регрессия решает выпуклую задачу оптимизации. Это делает процесс более стабильным и предсказуемым.

🔍 Но важно: логистическая регрессия может переобучиться при высокой размерности данных (особенно если признаков больше, чем наблюдений), или при наличии коррелированных и нерелевантных признаков — в этих случаях регуляризация обязательно нужна.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/955
Create:
Last Update:

Почему логистическая регрессия не подвержена переобучению так же сильно, как деревья решений или нейросети

Логистическая регрессия — это линейная модель, и ее склонность к переобучению значительно ниже, чем у более гибких моделей, таких как decision trees или нейросети. Вот почему:

1. Ограниченная сложность модели

Логистическая регрессия линейно разделяет пространство признаков, что ограничивает ее гипотезы (модельное семейство). Это значит, что она имеет высокое смещение (bias), но низкую дисперсию (variance). Переобучение обычно связано с высокой дисперсией, которой у линейной модели меньше.

2. Малая VC-дименсия

В отличие от деревьев решений, которые могут запомнить структуру обучающей выборки почти целиком, логистическая регрессия имеет гораздо более низкую VC-дименсию, а значит — меньше риск выучить шум.

3. Регуляризация встроена естественным образом

В логистическую регрессию часто добавляют L1 или L2 регуляризацию (например, через параметр C в `sklearn`). Это сдерживает веса модели и предотвращает переобучение.

4. Обучение через оптимизацию функции правдоподобия

Вместо того чтобы искать сложные деревья или веса, как в нейросетях, логистическая регрессия решает выпуклую задачу оптимизации. Это делает процесс более стабильным и предсказуемым.

🔍 Но важно: логистическая регрессия может переобучиться при высокой размерности данных (особенно если признаков больше, чем наблюдений), или при наличии коррелированных и нерелевантных признаков — в этих случаях регуляризация обязательно нужна.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/955

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Find Channels On Telegram?

Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

Библиотека собеса по Data Science | вопросы с собеседований from ms


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA